Optimal Error Estimates for Analytic Continuation in the Upper Half‐Plane

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytic Error Estimates

I present an analytic method for estimating the errors in fitting a distribution. A well-known theorem from statistics gives the minimum variance bound (MVB) for the uncertainty in estimating a set of parameters λi, when a distribution function F (z;λ1...λm) is fit to N observations of the quantity(ies) z. For example, a power-law distribution (of two parameters A and Λ) is F (z;A,Λ) = Az. I pr...

متن کامل

Application of the Norm Estimates for Univalence of Analytic Functions

By using norm estimates of the pre-Schwarzian derivatives for certain family of analytic functions, we shall give simple sufficient conditions for univalence of analytic functions.

متن کامل

Analytic continuation of representations and estimates of automorphic forms

0.1. Analytic vectors and their analytic continuation. Let G be a Lie group and (π,G, V ) a continuous representation of G in a topological vector space V . A vector v ∈ V is called analytic if the function ξv : g 7→ π(g)v is a real analytic function on G with values in V . This means that there exists a neighborhood U of G in its complexification GC such that ξv extends to a holomorphic functi...

متن کامل

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

Analytic Continuation and Semiclassical Resolvent Estimates on Asymptotically Hyperbolic Spaces

In this paper we construct a parametrix for the high-energy asymptotics of the analytic continuation of the resolvent on a Riemannian manifold which is a small perturbation of the Poincaré metric on hyperbolic space. As a result, we obtain non-trapping high energy estimates for this analytic continuation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications on Pure and Applied Mathematics

سال: 2020

ISSN: 0010-3640,1097-0312

DOI: 10.1002/cpa.21901